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We continue the study of valence-bond solid antiferromagnetic quantum 
Hamiltonians. These Hamiltonians are invariant under rotations in spin space. 
We prove that a particular two-dimensional model from this class (the spin-3/2 
model on the hexagonal lattice) has a unique ground state in the infinite-volume 
limit and hence no N~el order. Moreover, all truncated correlation functions 
decay exponentially in this ground state. We also characterize all the finite- 
volume ground states of these models (in every dimension), and prove that the 
two-point correlation function of the spin-2 square lattice model with periodic 
boundary conditions has exponential decay. 
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1. I N T R O D U C T I O N  

The properties of the g round  states of quan tum antiferromagnets are 
usually difficult to determine. Even in those rare cases in which the g round  
states can be explicitly found, the properties of the explicit solution can 
require further efforts. The usual Heisenberg ant iferromagnet  in three 
dimensions was shown by Dyson  et al. ~6~ to have N~el order in the g round  
state and at low temperature  when the spin is at least 1. Fe rnando  Perez 
and Jord~o Neves (81 extended this result to the two-dimensional  model  in 
the g round  state for spin 3/2 or more. This latter result actually holds for 
spin 1 or more,  as was pointed out  in ref. 2. The possibility of  an isotropic 
[i.e., SU(2)  invar iant] ,  two-dimensional  quan tum antiferromagnet  which 
does not  N6el order  in the g round  state is of great interest. In the present 
paper we provide a r igorous example of  such a model. 
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The results of this paper were conjectured in ref. 2. The Hamiltonian 
for the valence-bond solid (VBS) models studied here and in ref. 2 is 

H =  ~ p2s (i,j) 
(i,j) 

where the sum is over all nearest neighbor bonds in the lattice, and p2s is (i , j)  
the projection onto the states whose restriction to sites i and j has total 
spin 2S. The spin S at each site is taken to be half of the coordination num- 
ber of the lattice. The operator P(i,j),2s like the usual Heisenberg S i ' S j  
operator, is antiferromagnetic and isotropic. In fact, p2s (i.j) can be written as 
a polynomial in & ' S j .  Ground states for these models--the VBS states-- 
were explicitly described in refs. 1 and 2. The VBS states were first construc- 
ted by Affleck. (1) One of the new results of the present paper is a proof that 
they are the only ground states. Even though we know the ground states of 
these models explicitly, the properties of these ground states have only been 
determined for a few of the models. 

The simplest of the VBS models in ref. 2 is a one-dimensional spin-1 
model with the above Hamiltonian. For this model we were able to show 
that there is a unique infinite-volume ground state, that the truncated 
correlation functions all decay exponentially in this ground state, and that 
there is a gap between the ground-state energy and the rest of the 
spectrum. This is the only example known so far for which Haldane's 
conjecture about spin chains has been rigorously proven (see ref. 15 for a 
discussion and partial resolution of this conjecture). 

For the spin-3/2 VBS model on the hexagonal lattice it was shown in 
ref. 2 that the two-point function decays exponentially, but only for the 
case of periodic boundary conditions. In the present paper we prove that in 
the infinite-volume limit this model has a unique ground state and the 
truncated correlation functions all have exponential decay. Of course, the 
uniqueness of the infinite-volume ground state implies the absence of N6el 
order. 

We also prove in the present paper that the two-point function for the 
spin-2 model on the square lattice has exponential decay when periodic 
boundary conditions are used. The exponential decay of the two-point 
function for other choices of the boundary conditions and the uniqueness 
of the infinite-volume ground state for this square lattice model are open 
questions. 

The results of the present paper were all made possible by the 
representation for the VBS ground states found by Arovas et al3 3) Their 
representation and the unique factorization theorem for polynomials are 
used in Section 2 to characterize explicitly all the ground states of a general 
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class of VBS models in a finite volume. Their representation also leads to a 
simple random walk representation for the correlation functions. For the 
case of periodic boundary conditions all the terms in this random walk 
representation are nonnegative. This fact is exploited in Section 3 to prove 
exponential decay of the two-point function for the hexagonal and square 
lattice VBS models. For boundary conditions other than the periodic one 
the terms in the random walk representation have mixed signs. We handle 
this situation in Section 4 by using the machinery of polymer expansions. 
For the hexagonal lattice model we can prove this expansion converges 
and from this deduce the uniqueness of the infinite-volume ground state. 
Proving that the expansion converges requires numerous tedious estimates 
concerning the number of polymers of various types. This counting, which 
is done with the help of a computer, is explained in the appendix. 

Before closing this section, we recall two conjectures about the VBS 
models which were made in ref. 2 and are still unproven. 

1. There is an energy gap above the ground state for the two-dimen- 
sional hexagonal and square lattice models considered here. This conjec- 
ture is based on the fact that correlations decay exponentially. In ref. 2 the 
existence of the energy gap was proved for the one-dimensional spin-1 
model. An elegant argument of Knabe (1~ reduces the problem of proving 
the gap to a calculation involving only finite systems. For the one-dimen- 
sional chain Knabe has suceeded in carrying out the required calculation 
with the help of a computer, but for the higher dimensional models the 
required calculation is beyond the capacity of the computer. 

2. For sufficiently high dimensions, the VBS model on a hypercubic 
lattice has N6el order in the ground state. Some support for this conjecture 
is the fact that the Cayley tree model with large coordination number has 
N6el order, but it does not when the coordination number is small. (2~ 

2. EXPLIC IT  C H A R A C T E R I Z A T I O N  OF F I N I T E - V O L U M E  
G R O U N D  S T A T E S  

The VBS states are described here and shown to be the only ground 
states of the VBS Hamiltonian. 

A lattice consists of a finite set of sites and a finite set of bonds. The 
former is denoted by A and the latter by B. The symbol IA[ denotes the 
number of sites in A. We assume that the number of sites connected to a 
given site (i.e., th'e coordination number) is at most z and at least one. The 
boundary gA is the set of sites which have coordination number strictly 
smaller than z. 
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We define a quantum spin system on the lattice by associating an 
S = z/2 quantum spin with each site. As in ref. 2, we consider the following 
isotropic antiferromagnetic Hamiltonian: 

H =  ~, p 2 s  (2.1) (i,j) 
( i , j )~  B 

Here p2s is the orthogonal projection onto the states whose restriction to (i,J) 
sites i and j has total spin 2S = z (i.e., the maximum possible value). 

A beautiful representation of the VBS states was given by Arovas et 
a[. (3) We review their representation by first reviewing the Weyl (14) 
representation of the Lie algebra of SU(2). Consider the space of 
polynomials in the two variables u and v with coefficients in C such that for 
each monomial in the polynomial the power of u plus the power of v equals 
2S. These polynomials form a vector space over C. The action of the spin 
operators on this (2S+ 1)-dimensional vector space is given by the linear 
operators 

S + ~ u ~/~v 

S -  ,-~ v ~/~u (2.2) 

S z , ~  �89 O / ~ u -  v O/&) 

The eigenstates of S z are the polynomials uJv 2s-s,  j = 0, 1 ..... 2S. We define 
an inner product on this space of polynomials by requiring that the vectors 
uJv 2s J[(~s)(2S+ 1)] 1/2 be an orthonormal basis. It is a straightforward 
computation to check that (2.2) and this inner product yield the (2S+ 1)- 
dimensional irreducible unitary representation of SU(2). 

We can explicitly realize this inner product as follows. Let 

u = e i~/2 cos(0/2), v = e i~/2 sin(0/2) (2.3) 

where 0 and ~b are the usual angles for the sphere, so 0 ~< 0 < re, 0 ~ ~b < 2m 
The inner product of two polynomials ~ and ~ is then given by 

(~, qb )=f  d ~  ~(u, v) ~(u, v) (2.4) 

where df~ = (4n) 1sin 0 dO d(~ is the usual normalized, invariant measure 
on the sphere. It is a straightforward calculation to check that this formula 
does indeed yield the desired inner product. 

An important rule for computing expectation values was derived in 
ref. 3. Consider one spin (with S fixed), let ~ and q5 be two vectors (i.e., 
polynomials in u, v), and let A be any operator that conserves S (i.e., the 
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degree of ~P and q~, which is 2S). This means that A can be written as the 
differential operator 

A = ~ akO.(O/OU)k(O/OV)tuK+Jv t j (2.5) 
k , l , j  

The assertion is that there are constants 

C , , = ( 2 S + 2 ) ( 2 S + 3 ) . . . ( 2 S + k + l + 1 ) ,  with Coo=1 (2.6) 

which are independent of  ~ and 4, such that 

(5 u, Aq))= ~ Cktaktj(UkVl~, U~ +JV~--Jqb) (2.7) 
k, l , j  

[Note that u%~7 u and uk+Jv~-J~b have degree 2 S + k + l ,  but the tuner 
products in (2.7) are still well defined by formula (2.4).] This formula (2.7) 
can be checked by expanding ~ and q~ in a monomial basis. 

The significance of (2.7) is this. Corresponding to every A there is a 
polynomial P in u, v, u, v [and hence a function A(f~) of 0, ~b by (2.3)] such 
that 

(~, Aq~) = f d ~  ~(u, v) ~(u, v) A(~)  (2.8) 

holds, regardless of ~g and q~. This formula (2.8) will be important for us in 
computing expectation values. The formula obviously extends to operators 
acting on the tensor product of several spin spaces. 

To describe states on the lattice A, we associate variables ui, vi with 
each site i in A. We let ~ ,  denote the polynomials in ui and v~ such that for 
each monomial in the polynomial the power of u~ plus the power of v~ 
equals 2S. The state space ~xf for A is given by (~) ~ ~f~, i.e., it consists of all 
polynomials which are jointly homogeneous of degree 2S in each pair ui, v~ 
for each i ~ A. 

The main result of this section is the following theorem, which 
explicitly characterizes the ground states of H in (2.1). Since H is clearly 
positive semidefinite, this theorem also proves that the ground-state energy 
of H is zero. 

Theorem 2.1 (Character izat ion of  Ground States) .  Let 
~ue ~ be such that H ~ =  0. Then there exists a unique polynomial q5 in 
the variables u~ and v~ with i~ OA such that 

7u = q~ I~ (u~vj- ujv~) (2.9) 
( i , j )~B  

Conversely, any state ~ of the form (2.9) satisfies H~u= 0. 
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Remarks. 1. We refer to states of the form (2.9) as VBS states, since 
these states contain a valence bond (i.e., a singlet pair) for each bond in the 
lattice. The polynomial representation (2.9) of the VBS states was 
introduced by Arovas eta/. (3) The new features of our Theorem 2.1 are the 
assertions that all the ground states of H are given in (2.9) and that 45 is 
unique. 

2. There is another way to think of these VBS states. Following refs. 
1 and 2, we think of each spin S as the symmetrization of the product of 2S 
spin-1/2's. We first consider an extended (or unphysical) Hilbert space 
which has 2S spin-1/2's at each site of A. The projection operator 

= @ i ~ ,  where ~ is the symmetrization operator for the 2S spin-1/2's of 
the site i, projects this unphysical Hilbert space onto the physical Hilbert 
space for spin S at each site. The VBS states can now be written as follows: 

Here the valence bond V 0 denotes the singlet state which can be formed 
using a spin 1/2 at site i and a spin 1/2 at site j. The representation (2.10) 
follows in a straightforward, but tedious way from Theorem 2.1. Since we 
shall have no need of (2.10) here, we shall not bother to prove the 
equivalence. Note that, unlike the situation for 45 in Theorem 2.1, the state 
gtOA in (2.10) is not unique in general. Following ref. 2, we can represent 
these VBS states diagrammatically as shown in Fig. 1. 

3. Theorem 2.1 was conjectured in ref. 2 and proven for the one- 
dimensional spin-1 case. The proof we give here not only covers the general 
case, but is also considerably simpler than the proof in ref. 2. Our proof, 

II~, f _  , r " _ ~  

iI:i t 

Fig. 1. The VBS state on the hexagonal lattice. Each dot represents a spin 1/2. The solid 
lines indicate singlet pairs, and the dotted circles indicate the symmetrization of three spin 
1/2's to form a spin 3/2. 
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however, does not apply to the Majumdar-Ghosh model (H'~21 and its 
generalizations.(2,~o) Chayes et al. (s) have recently proved the corresponding 
theorem for some of these models. 

4. The reader should note that Theorem 2.1 does not require A to be 
bipartite. There can be "frustration." For  example, if there are three spins 
with S =  1 arranged in a triangle, the ground state is unique and has zero 
energy. 

We now turn to the proof of Theorem 2.1. For  a bond (i, j )  we define 
two subspaces of ~4,~,.Q~'~j. as follows [-in the following we use the 
abbreviations (u, v) = (ui, v~) and (u', v') = (uj, vs-)]: 

= { ( u v ' - v u ' )  q (u, v, u', 

Here q5 is an arbitrary polynomial such that the product (uv'-vu')q~ is in 
H , |  s. This means that q5 has degree 2 S - 1  in (u, v) and 2 S - 1  in 
(u', v'). The pzs is the orthogonal projection onto the subspace where the (i,j) 
total spin of the two sites is 2S, and 5P2 is just the ground states of the one- 
bond Hamiltonian. Then we have the following elementary lemma. 

Lemma 2.2. ~=5~2. 

Proof. We first prove the inclusion ~ c ~ ,  i.e., if ~ u ~ ,  then 
p2s(i.j) 7" = 0. Let T ~ = S~ + S] (c~ = x, y, z) be the total spin operators. Each 
S~ is given by (2.2) as a differential operator. We easily find that 
T~(uv ' -vu ' )=O for all c~ and, since T ~ is a derivation and ~ =  
(uv'-vu')q~, we have that T~g*=(uv'-vu')T=q~. Repeating this and 
adding, we have T2~p= (uv'-vu')T2qS. Now �9 is a polynomial and can be 
written as a sum Z ~bj, w h e r e  T2qSj  -- j ( j  + 1 ) ~/. Then T2(uv ' - vu') q~j = 
j ( j +  1)(uv'-vu')q~j and hence (uv'-vu')q~j is an eigenstate of T 2. But 
~b2s = 0 since q5 has degree 2 S -  1 in i and in j. Therefore T2g -" has no 
component in the T 2 = 2 S ( 2 S +  1) subspace, which means that ~ e ~ .  

To prove the identity ~ = ~ ,  we simply calculate the dimensions of 
the spaces. Clearly we have dim ~ = (2S + 1 ) 2 -  (4S + 1) = (2S) 2. Note 
that in the definition of ~ we can take (2S) 2 linearly independent q~, 
namely b l 2 S - l - I u l ( u ' ) 2 S - m - l ( v r )  m with O~l,  m < ~ 2 S - 1 .  After multipli- 
cation by (uv ' -vu ' ) ,  this gives us  ( 2 S )  2 linearly independent vectors in ~ .  
This is so because if ( u v ' - v u ' ) P  is identically zero, then P is identically 
zero. Thus we have dim ~ = ( 2 S )  2 =  dim 5P2, which proves the lemma. | 

k e m m a  2.3. If 7~eJf=@koVfk  satisfies p2s 7~=0 for some (i,j) 
particular (i, j~, then it factorizes as ~P= (u iv j -  viuj)q~. Conversely, if 
can be written as g*= (uivj-v~uj)qs, then it satisfies p2s ~g=0. (i,j) 
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Proof. The space of all ~ satisfying p2s ~t=O is ~2@((~k~i,j-)Ct~ (i , j)  
and that of all ~u which can be written as ~U=(u~vj-viuj)~b is ~ |  
((~)k#~.j ~ ) .  Thus, the lemma follows from the identity ~ = 5e2 . | 

Proof of  Theorem 2. 1. Let ~ e  ~ be a state which satisfies H ~ =  0. 
Then, from (the first part of) Lemma 2.3 we see that ~u contains the factor 
(u~vj-vjuj)  for each bond (i, j). The polynomial ring over C in the 
variables u~, vi for i e A  is a unique factorization domain (ref. 7, Sec- 
tion 3.2). This means that if 7 t contains the irreducible polynomials A and 
B as factors (i.e., ~ = A~ and ~u = B/~), then ~ contains AB as a factor, i.e., 
~U=AB 7 for some unique 7- Applying this remark to the irreducible 
polynomials u~vj- v~uj for each bond, we have that ~u has the form of (2.9) 
and that ~b is unique. The second part of the theorem follows immediately 
from the second part of Lemma 2.3. | 

3. ABSENCE OF NI~EL ORDER IN THE H E X A G O N A L  
A N D  SQUARE LATTICE VBS MODELS 

Two basic results for the VBS states on the hexagonal and square 
lattice will be proved here. The proofs are based on a simple random walk 
expansion derived from the representation of Arovas et al. ~3) For the 
hexagonal lattice, much stronger results will be proved in the next section. 

In ref. 2 it was shown for the hexagonal lattice (with periodic boun- 
dary conditions) that the two-point function decays exponentially. The first 
theorem of this section extends this result to the square lattice. 

In the following theorem we consider a finite hexagonal or square lat- 
tice A wrapped on a torus so that there are no boundary spins. We assume 
that A is bipartite, i.e., there is no "frustration." The importance of this 
condition is explained after Eq. (3.8). In this case the ground state ~u is 
unique (Theorem 2.1) and one can define the expectation value of an 
operator A by 

~A) = ( ~ ,  A~U)/(~, ~)  

Theorem 3.1 (Bounds on the T w o - P o i n t  Funct ion) .  Let A 
be a finite, bipartite, two-dimensional hexagonal or square lattice with 
periodic boundary conditions. The two-point function of the VBS state on 
A satisfies the bounds 

0 ~< ( - 1 )  li jj ~Si "S  j )  ~< C e x p ( - ] i - j ] / ~ )  (3.1) 

where C and ~ are positive constants which are independent of the lattice 
size, and l i -  Jl is the minimum number of bonds needed to connect i and j 
(i.e., the graph-theoretic distance). 
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The theorem is also valid for a general bipartite lattice without boun- 
dary and with coordination number z = 3 or 4. The constants C and 
depend on the lattice structure. For  the hexagonal (or any bipartite lattice 
with z = 3), we can choose ~ = 2.5. For  the two-dimensional square lattice, 
we have to choose ~ = 160, though we suspect that  the true correlation 
length is much smaller in this case. 

The existence of exponential decay strongly suggests, but does not 
prove, the absence of Neel order in the state. This may be tested directly by 
considering the VBS state with boundary conditions which favor N6el 
order. Consider the hexagonal or square lattice A with boundary c3A. Since 
A is bipartite, we can decompose A into a disjoint union A = A+ w A 
with the property that for any ( i , j ) s B  either i~A+, j eA  or j~A+, 
i~ A . Then the VBS state with N6el boundary conditions is defined as 

~PNa~,= Iq (ui~j-v,uj) FI u~ -~(k} ~-i vf -~{') (3.2) 
(i,j)e B k c A +  c~aA I ~ A _  c~?~A 

where z(k) ( < z )  denotes the coordination number of the boundary site k. 
We define the corresponding expectation value as 

~A )N6e�91 = ( ~'gN~el, A ~N+el)/( 7tN~e~, ~N~l) 

Intuitively, one would expect the N6el boundary conditions to favor 
N6el order more than any other choice of boundary conditions, i.e., choice 
of @ in (2.9). The representation of ref. 3 can be used to prove the following 
theorem, which could not be proved by the methods in ref. 2. 

Theorem 3.2 (Bounds on the N~el Order). Let A be a finite 
two-dimensional hexagonal or square lattice with boundary 0A. The N6el 
order parameter of the VBS state on A with N6el boundary conditions 
satisfies the bounds 

0 ~< (--1)"(S~)Ne~l ~< C'  qc~AI exp [ -d i s t ( i ,  8A)/{] (3.3) 

where C'  and ~ are positive constants which are independent of the lattice 
size. {0AI is the number of sites in the boundary, dist(i, 0A) is the minimum 
of li-j] for jeOA, and ( - 1 ) i = 1  if leA+ and - 1  if leA_.  Therefore, 
when the lattice size tends to infinity and ieA is fixed, (S~)N+el goes to 
zero. 

Again we can prove Theorem 3.2 for a more general class of lattices. 
Since we expect the N~el order parameter to assume its maximum value for 
N~el boundary conditions, the above theorem strongly indicates the 
absence of N6el order for any boundary conditions. However, our simple 
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proof in this section only works in the "hardest" case of N6el boundary 
conditions. For the particular case of the hexagonal lattice, however, we 
will be able to treat arbitrary boundary conditions in the next section. 
Rigorous treatment of  the square lattice with arbitrary boundary conditions is 
still an open problem. 

We begin the proofs of Theorems 3.1 and 3.2 by developing a random 
walk expansion for the norm of the VBS state and expectations in that 
state. From Eqs. (2.4) and (2.9), we get the following formula (3) for the 
norm of the VBS state ~: 

(i,j) 6 B (i,j) e B 2 

(3.4) 

where d l ) =  Y[i~A d~;.  The second equality follows from the identity 

f u , v j -  v,ujl 2 = �89 - ~ / .  n j )  

and f ( ~ )  is simply equal to Jr 2. We can carry out a similar construction 
for the quantity (T, AT), where A is an arbitrary operator, to get the 
following formula: 

(i , j)~ B 

Here A(~) is a function of { ~ :  i~ support of A} given by (2.8). When A is 
S~ or S i ' S j ,  A ( ~ )  is simply (S+  1)~i or (S+  1 ) 2 ~ . ~ j .  

Combining (3.4) and (3.5), we finally get the Arovas-Auerbach- 
Haldane representation (3) for expectation values in the VBS states 

( A )  - ( ~ ' A T - - - ~ ) - ~ d n A ( a ) l - I u ' j ) ~ e ( 1 - n i ' n j ) f ( n )  (3.6) 
( ~r ~[I) I d~-,~ I - [ ( i , j ) en  ( l  _ [-,s ~-~j) f (~-~)  

It is worth noting that the right side of (3.6) can be regarded as the expec- 
tation value of a classical Heisenberg model with the unusual (but non- 
negative) Boltzmann weight (3) ( 1 - ~ ' ~ j ) .  The classical nature of the 
representation will allow us to use some of the standard techniques for 
classical spin systems. 

Let us first treat the case with periodic boundary conditions, so that 
OA = ;Z5 = empty set. We denote the denominator and the numerator in 
(3.6) by Z and Z(A), respectively. We expand the product in Z as follows: 

B (i, j )  e F 
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Here the sum runs over all subsets F of B. Since the measure is invariant 
under the local change of variable n i  ~ - h i ,  we see that the integrand in 
the final equation must contain even numbers of n i  for each i in order to 
contribute to Z. In geometric language, the relevant F must satisfy 0F = ~ ,  
where the boundary c~B of any B c B is defined as the set of sites i which 
belong to an odd number of bonds in B. By decomposing F into connected 
components as F =  7~ w ... w 7n, we get the polymer representation 

Z =  2 W(t l ) - - -W(7 , )  (3.7) 
(71,...,7.} 

yic~ y i=  (~ 

where the statistical weight of a polymer is defined as follows: 

w(t)=fdn 17 (-n,.nj)=faa Fl n,.nj (3a) 
( i , j )  e y  ( i . j )  e'? 

The final identity is true because the number of bonds contained in 7 is 
alway even (if is here that the fact that A is bipartite is used). Each loop t~ 
is by definition a connected subset of B satisfying 07~ = ~ .  By the statement 
7~ ~ tj  = ~ we mean that 7~ and tj  have no common sites. The summation 
in (3.7) runs over the integers n = 0 ,  1,..., and all possible {~,..., 7n}. 

By repeating exactly the same procedure, we will get a similar polymer 
representation for the quantity Z(A). When A = S~" Sj we get the following: 

( S + I )  2(-1)1 '  YtZ(Si. Sy) 

=(-1)lg-Jt f dn ( n~ 'n f l  [I ( 1 - n k ' n z )  
( k , l ) ~ B  

= ~ ~ W~(to) W(7~)... W(t,)  (3.9) 
70 {71...,7n} 

070-- { i , j }  7mr~Yp - (~J 
( m , p - - O ,  1,...,n) 

Here to is a connected set of bonds whose boundary is {i, j}, and the 
corresponding statistical weight is 

W~(7o) = f a n  ( n , .  n j )  IF] n~"  n ,  (3.10) 
(k,/)~ 7o 

We have used the fact that ( - 1 )  I~ Jl = (_1)t701 for any t0 with ~37o = {i,j}, 
where [to[ is the number of bonds in to- 

The following elementary lemma is useful in our proof. 

k e m m a  3.3. Let n~ ..... ~2n be unit vectors in R 3. Then we have the 
following identity: 

f s 2n 1 2n f s 2n a n  FI n . n , - - -  Z n , - n ,  a n  1-] n - n ~  (3.11) 
2 i=1 2 n + l j =  2 2 i=z 
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Proof. By Wick's theorem, 

2n 2n 2n 
f d 3 x e  lxl2/2 H X'~ '~i= E ~ ' ~ l ' . j  f d 3 x e  Ixl2/2 U x .~ '~ i  

i=l j=2 i=2 
i# j  

(3.12) 

where x is integrated over 113. Letting x = r ~  with 0 ~< r < oo and ~ a unit 
vector, we have d3x = 47zr2dr d~. We also have that 

fo ~r2"e r2/2 dr = (27Z) 1/2. 1 �9 3 . 5 . . .  (2n - 1) 

Substituting this in (3.2) gives (3.11). 1 

Let us consider only the hexagonal lattice for the moment. Note that 
any loop in the hexagonal lattice has no self-intersections, since the coor- 
dination number of the lattice is three. By using (3.11) with n = l  
repeatedly, we can evaluate the statistical weights W(7), Wu(7o) as follows: 

W ( 7 ) = 3 - H + l  } 
W~j(7o) = 3 -I~ol +g(~o) hexagonal lattice (3.13) 

Here g(7o)=0,  1,2 is the number of loops in 7o, and 17] denotes the 
number of bonds in 7. 7o can contain at most two loops, since it can 
intersect itself only at sites i and j. 

Since W(7), Wo.(7o) are nonnegative, we can bound Z(Si" Sj) as 

o~< (s+ 1)-2(-1) "-s~ z(s,- sj) 

~ {~1...,~,} 
r {i,j} 7mC~Yp=~ff5 

(rn, p= l,2,...,n) 

= z  Z woI~o)=Z Z 3 ,~od+g~-/o~ (3.14) 
Y0 YO 

a~o- {i,j} ay0= {i,J} 

where we simply omitted the constraint 7 o n T m = Z  in the middle 
expression in (3.14). Note that any connected set 7o such that C~7o = {i, j} 
can be associated with a (no t  necessarily unique) self-avoiding walk 
w={io, il ..... it}, where io=i, iz=L ( i~ , ik+ l )eB ,  and (i~,ik+l)# 
(ira, i m + l )  if k # m .  Therefore from (3.14) we get 

O<<.(-1)l i-Jl(Si 'Sj>~(S+l)  ~ ~ 3-1~~ +2 ~< ~ 3 -Iwt+2 
~/0 w : i -+ j 

a~o {i,j} 

wo(7o) w(7,).., w(7.) 
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where the sum runs over all the (bond) self-avoiding walks (in the sense 
that no bond is traversed more than once) connecting i and j, and Iwl is 
the number of bonds in w. Since the hexagonal lattice has coordination 
number three, the total number of (bond) self-avoiding walks with Iwl = l is 
bounded by 3-2  t ~. Thus we can bound the above sum as 

E 3-[w1+2~< 3 .2  t 1.3 z+z= 
w : i ~ j  l= ]i--jl 

This proves Theorem 3.1 for the hexagonal lattice. 
The extension of the above proof to the square lattice requires a more 

careful treatment of the statistical weight. We will construct upper bounds 
for W0(7o) in an inductive manner as follows. For  an arbitrary integer 
n = 0, 1, 2,... and connected 70 such that ~7o = {i, j}, we define 

x~"~(~o)= Z 3 ~wtW(7o\W)+ Z Z 3-~w~w~j(70\ w) 
w: i~ j  kEyo w: i~k  

wc~0,1wl ~<,, k~j w~-~0,1wl =~ (3.15) 

where w always denotes a (bond) self-avoiding walk. The weights W(7o\W ) 
and Wkj(7o\W) are defined as in (3.8) and (3.10), respectively. The symbol 
7o\W means 70 with the bonds in w deleted, and the condition k e 7o means 
that k ~ A and that 70 contains a bond with k as one of its endpoints. 

I.emma 3.4. For any 70, i, j, the quantity J(~")(7o) is nondecreasing 
in n. 

Proof Consider a site k and a walk w that contributes to the second 
term in (3.15). Because the boundary of 70\w is {k, j} and the square lat- 
tice has coordination number four, one of the following is true: (i) There is 
a unique k' such that the bond (k, k')e7o\W. (ii) There are three sites kp 
( p =  1, 2, 3) such that (k, kp)~7o\W. Suppose that (i) is the case. We use 
(3.11) with n =  1 by setting ~ = ~ k  to get 

Wkj(7o\W) = 1 ~W~,/7o\W ) (3.16) 

where w' = w w (k, k'). When (ii) is the case, we use (3.11) with n = 2 in the 
form 

p = 1,2,3 

_! - -5  { (~r'~kl ~ ~'~j) f dak ( a k ~ 1 7 6  ~ - ( t w o  permutations)} 
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to get 
1 .<1 

W~j(7o\W)=-~ ~ Wk, j(7o\Wp)..~ 3 ~ Wk, j(7o\Wp) (3.17) 
p =  1,2,3 p =  1,2,3 

where wp= ww {k, kp}. 
In bo th  cases k '  o r  kp m a y  equal  j. If  this happens,  the new walk w' or 

Wp goes f rom i to j and we make  use of the equali ty Wjj(7o\W ) = W(7o\W ). 
If this does not  happen,  the new walk w' or  wp has length n + 1 and goes 
f rom i to some site k ' s T o .  Using (3.16) and (3.17), we thus obta in  the 
following bound:  

k ~ 7 0  w : i ~ k  
k ~ j  wc~o,  ]w[ = n  

<. y~ 3 iw'l W(7o\W') 
w ' : i ~ j  

w ' c  7o,lw'l = n + l  

+ ~ Z 3-1w'lwk'j(7o\ w') 
k ' ~ 7 0  w ' : i ~ k '  
k ' r  w 'c70,  l w ' l = n + l  

Substi tut ing the above bound  in (3.15), the desired inequali ty X~")(7o)~< 
X ( n + l ) ( ~ ) O )  follows. | 

F r o m  L e m m a  3.4 we see that  

(o) wo(~o) = xo (~o) ~< x~n)(~o) = 3 -Iwl W(~o\W ) 
w : i ~ j  
wcTo 

where n >~ 1701. Substi tut ing the above  bound  in (3.9), we find 

(s+ 1) ~(-1) ' -J~z(s , .s j )  

<~ Z Z 3 - ~  F, W(~o\W) w(oll).., w(~.) 
YO w : i ~ j  { Y 1 ,-.-, "Yn } 

C~7o {i,j} w~70 Y m ~ Y p = ~  
(m,p=O, 1,...,n) 

We now switch the order  of  the summat ions  over  70 and w. Fix a w 
and consider the sums over  Vo and 71,..., 7,. The  constraints  are that  Vo = co, 
~1,-.., V,, are pairwise disjoint, and each of 71 ..... 7n is disjoint f rom 70. We 
obta in  an upper  bound  on the sum if we replace the last constraint  by the 
constraint  that  each of ~'l ..... ~, is disjoint f rom 7o\W. This sum over  
7o, 71,..., 7, then equals Z. Thus,  

( - 1 )  I~ ;IZ(S~'SJ)<~Z(S+I) 2 Z 3 b~J 
w : i ~ j  
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Now we have the following simple upper bound for the correlation 
function: 

( _ I ) I / - j I ( S . S j ) ~ <  y' 32 Iwl 
w : i ~ j  

To bound the number of (bond) self-avoiding walks on the square lattice, 
we divide such a walk into groups of four steps each. We then replace the 
constraint that the walk is (bond) self-avoiding by the constraint that the 
four bonds in each group are different from each other and are different 
from the last bond of the previous group of four bonds. The number of 
four-bond walks (with three possible initial directions) is 3 4 . Of these, two 
walks have the property that the fourth bond overlaps the last bond from 
the previous group. Therefore the number of choices for each group of four 
bonds is equal to 3 4 -  2. Hence the number of bond self-avoiding walks of 
length l is bounded by ( 3  4 - -  2 )  TM times a constant. This result holds even if 
I is not divisible by 4 (simply by making the constant large enough). 
Therefore we get 

0 ~ ( - - 1 )  Ii J l ( a i , a j )  ~ ~ const.(34--2)l/43 -I 
I= Fl--jl 

~< const-(1 __~)]i--jJ/4 
which proves Theorem 3.1 for the square lattice. 

The proof of Theorem 3.2 is essentially the same as the previous one. 
The only difference is in the treatment of the Nbel boundary conditions in 
(3.2). The boundary function f in (3.5) is 

where f2~ is the z component of ~i. We can again expand the "Boltzmann 
factor" [ I ( 1 - ~ 2 i ' f ~ j )  and the product in f(12) to get the polymer 
representation (3.7) for Z with the constraint 07i = ~ replaced by ~37~ c ~A. 
Note that the (appropriately defined) statistical weights W(7) are still 
strictly positive, because the N6el boundary conditions are perfectly com- 
mensurate with the minus signs arising in the expansion. By developing the 
representation for Z(S~) and repeating the construction of the upper 
bound, we finally get the bound 

o < ( - 1 ) ' ( s ; ) ~ o ~ < ( s + 1 )  ~ 3 -~w~ 
w:i ~ ~3A 

822/53iL2-26 



398 Kennedy, Lieb, and Tasaki 

where the sum runs over all the (bond) self-avoiding random walks which 
connect the site i to the boundary. Theorem 3.2 then follows by using the 
previous upper bounds for the number of walks of length/.  

4. THE I N F I N I T E - V O L U M E  L IMIT  FOR THE H E X A G O N A L  
LATTI C E 

Having found all the ground states for the finite hexagonal lattice with 
arbitrary boundary conditions in Section 2, we now turn our attention to 
the infinite-volume, or thermodynamic, limit. For  the hexagonal lattice 
there is a spin 3/2 at each site and the Hamiltonian is 

H= ~ p3 (4.1) 
{i,J) 

(i , j)~B 

The most important result in this section is a proof that this model has a 
unique infinite-volume ground state co. This uniqueness implies that 
co(Si) = 0, i.e., the model does not have N6el order. We will also show that 
all truncated correlation functions for this ground state have exponential 
decay. Thus we have a rigorous example of a two-dimensional isotropic 
quantum antiferromagnet which has a unique ground state with exponen- 
tially decaying correlation functions. 

In order to state our results as a theorem, we first recall some elemen- 
tary definitions about the infinite system. A local observable A is any 
polynomial in the spin operators which involves only finitely many sites. 
(Examples include the identity operator and the operator S i ' S j . )  The 
support of A is the set of sites which appear in A. A state p is a linear 
functional on the local observables such that p(A*A)>~O for all A and 
p (1 ) =  1. 

One way to construct a state is the following. Let r be the normalized 
ground state for a finite lattice A with periodic boundary conditions (which 
we have shown to be unique). For  any local A we can define 

CO A ( A ) = ( gtA , A gtA ) (4.2) 

provided A contains the support of A. We say that a sequence A ~ oe if the 
A's are an increasing sequence and if every point in the infinite lattice is 
eventually contained in some A. Our next theorem asserts the existence of 
co = lima ~ ~ COA and asserts that co is the only ground state. 

Theorem 4.1 (Uniqueness of the Hexagonal  Latt ice Ground 
State). For every local observable A, the state co(A)=limA~ ~ coA(A) 
exists and is independent of the sequence. This state co is the only infinite- 
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volume ground state, that is, if p is a state which is a ground state in the 
sense that 

3 P(P(i,j~) - 0 for every (i, j )  ~ B 

then p = co. Furthermore, co(Se)= 0 and 

Ico(Si" Sj)[ ~ Ce -li-jl/r (4.3) 

for some positive C and ~. In fact, for any two local observables A and B 

]co(A; B)I = Ico(AB) - co(A) co(B)] ~< C(A) C(B) exp[ -d is t (A,  B)/~] (4.4) 

where dist(A, B) is the distance between the supports of A and B, i.e., the 
minimum number of bonds needed to go from a site in the support of A to 
a site in the support of B. Here C(A) and C(B) are constants which depend 
only on A and B. 

Remarks. 1. There are other definitions of infinite-volume ground 
states. In general these definitions are not equivalent although we suspect 
that they are for this model. See the remark in Section 2.4 of ref. 2. 

2. The assertion that co is the unique infinite-volume ground state 
amounts, heuristically, to the assertion that if we take a sequence of planar 
lattices Aj tending to infinity and with boundary OA r then the choice of the 
state of ~?Aj [i.e., the choice of q~ in (2.9)] eventually does not affect what 
happens in any finite subset of the infinite hexagonal lattice. 

3. Our main tool to prove Theorem 4.1 is a convergent polymer 
expansion. There are no parameters, e.g., temperature, in our problem, so it 
is natural to ask how we can prove that our expansion converges without 
the luxury of a parameter which can be taken to be small. The answer is 
that the factor 1/3 in Lemma 3.3 (with n = 1) is sufficiently small to prove 
convergence. 

4. The reader may wonder why we do not prove an analogous 
theorem for the square lattice. The reason is that we are unable to show 
that the analogous polymer expansion for the square lattice model actually 
converges. In Theorem 3.1 we did show exponential decay of the two-point 
function for the square lattice with periodic boundary conditions, but, since 
that proof depended crucially on certain quantities being positive, it cannot 
extend to a proof of the uniqueness of the ground state. For  the VBS 
models on lattices in sufficiently high dimension, we expect the ground 
states to have N6el order. If this is the case, the ground states are no longer 
unique. 

We begin by developing an expansion for the finite-volume ground 
state coA' Consider the finite L x L  lattice A with periodic boundary 
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conditions. Let gt A be the unique, normalized ground state for this lattice. 
Then, by the representation of the previous section, for any local obser- 
vable A there is a function A(~)  of the solid angles ~ for i in the support 
of A such that 

(~pA,A~pA)=~d~I~(~j)(1--~g'~j)A(~) ZA(A) (4.5) - 

where the products are over all nearest neighbor pairs (i, j). 
As before, we expand out 1 -  ~ i . ~ j  to obtain 

ZA= ~hc W(yl)... W(yn) (4.6) 
{~1,..,7,} 

Implicit in (4.6) is that sum over all n = 0, 1, 2,.... In (4.6) each Yt is a con- 
nected loop in A and 7i ~ 7i = Z .  This hard-core condition is indicated by 
the hc superscript on the sum. Recall from (3.13) that the statistical weight 
m(7) is 

W(7) = 3 I~k + 1 (4.7) 

Equation (4.6) is the partition function of a gas of loops on the 
hexagonal lattice with a hard core repulsion and an activity W(y). There is 
a convergent expansion for the logarithm of this partition function if W(7) 
is sufficiently small. The standard result is that if there is a positive function 
a(7) such that 

1 
sup ~ [ W(7)[ ea(~/< 1 (4.8) 
~ a(7') ~ : ~ , ~  

then 

ZA = exp I ~ ~c(Yl ..... Y,,)W(Yl)"W(7,,) 1 (4.9) 

Here, @c(71,..-, 7n) is the connected part of the hard-core interaction (for the 
definition of Oc see ref. 4). Note that the sum in (4.9) does not have the 
hard-core condition, which means that n can be arbitrarily large. It is not 
obvious that this sum converges, but (4.8) guarantees that it converges 
absolutely. The proof that condition (4.8) implies convergence of the 
expansion for the logarithm of the partition function may be found in ref. 9. 
In ref. 4 the cardinality of y is used in place of a general function c@). 
Nonetheless, the methods of ref. 4 may be used to prove that condition 
(4.8) with a general a(7) implies convergence. 
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We will let a(7) = e 171, where 171 is the number of bonds in 7 and e is a 
positive constant. Condition (4.8) then reduces to 

! W ( j l e  ~m < e  (4.10) 
~:bE7 

where b is some fixed bond in the lattice. (The translational invariance has 
been used.) We could bound the number of 7% of length l which contain b 
by U - i .  Then 

[W(7)le~m~. < e~'2 ' 1 
7 : b ~ 7  l = 6  

l even 

After a little computation one discovers that this bound is too crude to 
prove that there is an e > 0 for which (4.10) holds. 

The bound can be improved by the following simple but useful 
strategem. For  the first few values of l, we explicitly compute the number of 
7% of length l which contain b. For  l =  6 there are two loops. For  l =  8 
there are none, and for l =  10 there are ten loops. Hence 

-p:b ~ ~ +-3-r + t= 12 e ~z (4.11) 
I even 

The series can be summed, and one finds that the above bound is less than 
e for e in the range 0.0614 ~< e ~< 0.0988. One can greatly enlarge the range 
of e for which (4.11 ) holds by computing the number of 7 containing a fixed 
b for longer lengths. These numbers for lengths up to 28 may be found in 
Table I. Although they are not needed in this section, they will be needed in 
the Appendix. 

There is a similar expansion for the n u m e r a t o r  ZA(A ) in Eq. (4.5), 

ZA(A)=~ ~ho(~,a) W(7; A) W(Tl)""  W(Tn) (4.12) 
7 {'~L...,7,} 

Here 7 is any subset of bonds of A (not necessarily a loop) with the 
property that every connected component of 7 has nonempty intersection 
with the support of A. In the inner sum, the 7i are closed loops with the 
properties that they do not intersect each other or 7 or the support of A. 
This condition is abbreviated by hc(7, A). The weight W(7, A) is defined by 

W(7;A)=fd~2 1-I (-~,..I'~j) A(~) (4.13) 
( i , j )  e 7 
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For a fixed 7, the sum over {71 ..... 7n} in (4.12) is the partition 
function for the volume obtained by deleting the sites in 7 or in the support 
of A from the original volume. If condition (4.10) holds, then this partition 
function can be exponentiated, 

ZA(A)=~W(A;7)exp[ ~(~'A) oc(71,...,7,)W(71)...W(yn) ] (4.14) 

where the superscript (7, A) means that each 7~ is a closed loop which is 
disjoint from 7 and from the support of A. The 7~ do not have to be 
pairwise disjoint. Combining (4.9) and (4.14), we have 

(gtA, AgtA)=~W(A;7)exp I zE~'A]~lc(71,...,Tn) m(71)'"m(Tn)] 

(4.15) 

where the superscript [7, A] means that at least one of the 7i must have 
nontrivial intersection with either 7 or with the support of A. 

Until now, in all our expressions 7 and 7i were sets of bonds in A. The 
limit as L--* oe is given by the right side of (4.15) without the constraint 
that the bonds are in A. The existence of this limit follows from the con- 
vergence of the polymer expansion by the usual arguments. The resulting 
infinite-volume state is denoted by co. The final formula is given by (4.1.5) 
but without the restriction that the 7z lie in any particular A. Since this 
formula is independent of the particular sequence of A's tending to infinity, 
the first sentence of Theorem 4.1 has been proved. 

Condition (4.10) and standard arguments imply inequality (4.4) in 
Theorem 4.1. We refer the reader to ref. 9 or ref. 4 for these arguments. In 
ref. 9 the condition for convergence of the expansion [inequality (1) in 
ref. 9] contains the factor exp[a(7) + d(7)] rather than just exp[a(7)] as in 
our (4.8). In ref. 9, d(7) is some positive function which is required for the 
proof of exponential decay of truncated correlations. In our (4.8) there is 
no d(7) present, but, since the inequality (4.10) is strict, we can replace the 
e on the right side of (4.10) by e -6  for some 6 > 0 .  It follows that (4.8) 
holds with ep[a(7)] replaced by ep[a(~)+ d(7)] if we let a(7)= (~-6)171 
and d(7)= 6 17I. 

To complete the proof of Theorem 4.1, our next task is to show that (9 
is the only infinite-volume ground state. Let p be an infinite-volume ground 
state as in the hypothesis of the theorem. We must show that p(A) = o)(A) 
for every local A. 

If we restrict p to the algebra of observables with support in some 
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fixed, finite-volume V, then this restriction can be written as a density 
matrix which involves only ground states for V, i.e., 

p(A)=~ C~(~ ,A~)  (4.16) 

where the Ca are nonnegative constants whose sum is 1, and each ~u is a 
normalized ground state for the Hamiltonian 

Hv= ~ p3 (i,j) 
( i , j )~  V 

where (i, j )  ~ V means (i, j )  E B and each of i and j belongs to V. To prove 
that o = p, it suffices to show that for all :~ 

I(~u=, A~U~)-~0(A)l ~< C e x p [ - d i s t ( A ,  8V)/~] (4.17) 

where dist(A, 0 V) is the distance from the support of A to the boundary of 
V, and where ~ > 0 and C are constants. 

For  reasons which will become clear in the Appendix, we take V to be 
of the form shown in Fig. 2. The results of the previous section imply that 
in the u, v representation each ~u is given by 

~(u, v)= I~ (uivj- ujvi) O~(u, v) (4.18) 
(i , j)E V 

Fig. 2. The volume V used in the proof of the uniqueness of the infinite-volume ground state 
for the hexagonal lattice models. There is a spin 3/2 at each site including the endpoints of the 
boundary bonds. 
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where ~ is a polynomial in the u~ and v~ with i ~ ~ V, the boundary sites in 
V. Furthermore, @~ must be jointly homogeneous of degree 2 in the 
variables u~, vg at each ieOV. 

In the ~ representation, Eq. (4.18) implies 

1-I (1--f~,.f~j)A(fl) (4.19) 
( i , j )E V 

where F~(f~) depends only on the ~ i  with i e •V. In the integration over the 
solid angles fli,  we will first integrate over the ~ with i in the interior of V 
and then over the ~r with ie  ~V. We denote the former collection of ~r by 
~'~int and the latter by ~av- Hence, 

fd =fd   fd ,nt 
For any operator B, let us define 

11 (B)~ov[] o0 = sup I (B)nov] 
~,v 

where 

(8) .ov-  dnin t B(n)  [I(i,j)~ v (1 - ~~i" ~'~j) 

d~'~int I~(i,j)e v (1 - ~ i"  ~j)  

is the expectation value for fixed nov.  
We then have 

I ( ~ ,  A ~ ) -  o~(A)l 

= f dnav]F~(n)[ 2 f d n i n  t {A(n) -co(A)}  

<~ I dn~ IF~(n)12 II ( A  - o)(A) ).o~ll co I dnint 

= I ] ( A - ~ o ( A ) ) ~ H ~ ( ~ ,  ~u) 

= II (A - co(A))a~vH 

( i , j )~  V 

r] ( l _ ~ i . ~ j )  
( i , j )~ V 

Therefore, in order to prove the bound (4.17), it suffices to check that for 
any choice of nov  

](A )nov-  co(A )] ~< C exp[ - dist(A, OV)/~] (4.20) 
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with C and ~ > 0 independent of f~ov. In what follows we omit the sub- 
script ~ v  and denote by ( A )  the expectation value for some fixed f~ev. 

We will prove (4.20) by developing a convergent polymer expansion 
for ( A )  and then comparing this with the expansion for co(A). The expan- 
sion for ( A )  is developed in the same way as that already done for co(A). 
The one important difference is that the expansion now contains polymers 
which are not loops. If ? is a walk which begins at a site i in ~3 V and ends at 
a site j in ~?V, then W(7) will be nonzero. To compute W(7), we note that 
the integration over ~k for k in 7 with k ~ i, j gives a factor of 1/3. After the 
last such integration we are left with ~ i . f ~  i. Thus, 

W(7) = (1/3)1~1- ~ .  f~j (4.21) 

Our polymer system consists of loops whose weight is given by (4.7), 
and of undirected walks between boundary sites whose weight is given by 
(4.21). The polymer expansion for this system converges if condition (4.8) 
holds. Our strategy for verifying (4.8) is the same as in the priodic boun- 
dary condition case. We explicitly calculate a finite number of terms in 
(4.8) and bound the rest. Unfortunately, we must now explicitly compute a 
rather large number of terms. These computations are relegated to the 
Appendix. 

Finally we consider ( A ) - c o ( A ) .  Our expansions (4.15) for the two 
quantities agree except for terms that reach all the way from the support of 
A to 0V. [Recall that the presence of ~c in (4.15) requires that 7, 71 ..... 7,, 
form one connected set.] The desired bound (4.20) follows by the usual 
techniques. The details are tedious, and therefore we omit them; similar 
arguments are given in ref. 13, Section 3, and in ref. 9, p. 494. 

A P P E N D I X  

The convergence of the polymer expansion developed in the last 
section is proved in this Appendix. 

In this polymer gas there are two types of polymers--loops and self- 
avoiding walks which begin and end at sites in 0V. We will refer to the 
later type simply as walks. In this Appendix, walk always means bond self- 
avoiding walk. The weight of a loop 7 is 

W(7) = 3-1~L+ 1 

where 171 is the number of bonds in 7. Recall from (4.21) that the weight of 
a walk 7 from site i to site j is 

w ( 7 )  = 3 i~l + l f ~ .  f~j 

(For each site i t  c3A there is a fixed unit vector fL.) 
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To check condition (4.8), we divide the polymers into various classes 
as follows: 

= {7:7 is a loop with 171 = l} 

f ; =  {7:7 is a walk with 171 = l} 

Y>~ = {7:7 is a walk with 171 > l} 

~K> t is defined analogously. 
We will prove (4.8) by considering the seven cases 7 'e  ~W3, ~4,  ~ ,  

~U6, L26, ~/g'>6, or 22>6. In each of these cases we split up the sum in (4.8) 
into several sums according to whether 7 belongs to ~3, ~W4, ~Ks,..., ~/~K2o, 
~/g'>2o, 226, 221o, 2212,.-., ~ 6 ,  or 50>26 . We should point out here that the 
shortest possible loop has six bonds. There are no loops with eight bonds, 
but beginning with l =  10 there are loops of length l for all even /. The 
shortest walk is of length 3 and can only occur at the corners of our region 
(see Fig. 2). Walks of all lengths ~>3 are possible, but those with odd 
length must begin and end on opposite sides of a corner. 

Our function ~(7) will only depend on 171, so we will write a(l) for c~(7) 
with [~1 = L We choose 

a(3) = 0.52, a(4) = 0.56, a(5) = 0.66, a(6) = 0.70, 

a(l)=O.151 for 1>6  (A.1) 

Let N(l) denote the number of loops of length I in the infinite heagonal 
lattice which contain a fixed bond b. 

N(l), which is independent of b, can be found for small values of l by 
hand, and for larger values of l with the aid of a computer. Table I gives 
N(1) for l~< 28. For  I >  28 we bound N(l) as follows. Think of b as the first 
step of the loop. The remaining l -  1 steps give at most 2 t -  ~ loops. We can 
improve this bound by using the requirement that the loop must end at its 
starting point. Given all but the last two steps of the walk, this requirement 
uniquely determines the last two steps. Hence 

N(I) <~ 2 ~- 3 

The presence of the boundary can only reduce the number of loops of 
length l containing a fixed bond b, so N(1) is always an upper bound for 
this number. 

We now consider (4.8) for each of the seven cases of 7' and show that 
it is satisfied in each case. 

Case 1, 7 ' ~ 3 .  There are only six 7' with I~'1 = 3, one at each 
corner. The corners all look the same, so we need only consider one such 
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7'. We can eplicitly calculate the number of walks '/ of length l which 
intersect 7' for l =  3, 4,..., 20 with the help of computer. The resulting 
integers will be denoted by M(I, 3) and are shown in the first column of 
Table II. 

The number of loops of length l which intersect 7' is denoted by 
M(/, 3) and is also shown in Table II for l =  6 and 10. 

Next we consider loops of length greater than 10. We will refer to 
bonds, both of whose endpoints are in the interior of V, as interior bonds. 
Bonds containing an endpoint in •A will be called boundary bonds. ~' 
contains only i7'1- 2 = 1 interior bond, and any loop which intersects ~' 
must contain this bond. Thus, for l >  10 we can bound the number of loops 
of length I which intersect 7' by N(l). 

Finally, we must consider walks of length l > 20 which intersect 7'. We 
divide such walks 7 into two classes according to whether 7 contains an 
interior or a boundary bond in ?'. (Of course, these cases are not disjoint, 
so there is some overcounting here.) 

Let Pi(l) denote the supremum over interior bonds b of the number of 
walks of length l which intersect b. Pb(l) is defined similarly, but with 
interior bond replaced by boundary bond. 

Since 7' contains I~ '1-2 interior bonds and 2 boundary bonds, the 
number of walks of length l >  20 intersecting 7' is at most 

2Pb(l)  + ( l<t  - 2) e i ( l )  

Table I. N u m b e r  of Loops of a Fixed 
Length Containing a Fixed Bond a 

l N(l) 

6 2 
8 0 

10 10 
12 8 
14 56 
16 96 
18 390 
20 920 
22 3,168 
24 8,592 
26 28,002 
28 81,368 

The lattice is infinite. 
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Table II. Number  of Polymers in the Class Represented by the 
Row Label which Intersect a fixed Polymer belonging to the 

Class Represented by the Column Label 

Fixed polymer 
belongs to: ~ ~ ~#/; "#/6 ~L~'6 

Number of 
polymers in 

1 1 1 1 1 
~U4 2 2 3 3 2 

2 2 2 2 2 
~#/~ 2 2 3 3 2 

6 7 7 7 7 
8 9 12 13 10 

14 18 19 20 20 
"W11o 18 22 27 30 24 
~r 38 50 55 62 60 
~ff/12 52 70 78 91 70 
~r 106 140 156 179 174 
~ 4  150 224 225 286 221 
~/11s 296 404 454 511 547 
~r 428 655 644 874 641 
ff'~i7 868 1207 1337 1561 1657 
~r 1284 2084 1940 2727 2066 
~119 2530 3525 3985 4776 4965 
~/U2 o 3818 6504 5793 8478 6578 
f 6  1 2 2 3 7 
5~ 3 7 6 10 30 

Table III. Upper Bound on the 
Number  of Walks of Length ( f rom a 

Fixed Site to the Boundary 

l e(t) 

1 1 
2 2 
3 2 
4 4 
5 6 
6 8 
7 16 
8 24 
9 40 

10 64 
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A crude bound on Pb(l) and Pi(l) is 2 t -  1. Unfortunately, this bound is 
too crude, even for the cases I >  20. We obtain a better bound by using the 
restriction that a walk must start and end at a boundary site. For a site k 
in the interior of V and a positive integer l, let p(k, l) be the number of 
walks of length l which begin at k and end at a site in 3 V. Then let 

P(I) = sup p(k, l) 
k 

P(I) is computed with the help of a computer  and shown in Table III. 
We can now bound Pb(1) as follows. Let b be a boundary bond. Let 7 

have length l and contain b. Since b is a boundary bond, we can think of b 
as the first step in 7. The next 1 - 1 1  steps yield at most 2 '-11 choices. The 
final 10 steps yield at most P ( 1 0 ) =  64 choices by the above. Consequently, 

Pb(l ) ~ 2 l 11. 64 = 2'  5 (A.2) 

To bound Pi(l), we fix an interior bond and arbitrarily designate one 
endpoint as the "left" endpoint and one as the "right" endpoint. For a walk 

which contains b, we let rn be the number  of bonds in the part  of ~ which 
attaches to the left endpoint. Then there are l - m - 1  bonds in the part 
which attaches to the right endpoint, m must be summed from 1 to l - 1 .  
We now see that 

/--1 
P,(l)<~ ~ P ( m ) P ( l - m - 1 )  (A.3) 

m ~ l  

For  1 ~<rn~< 10 we know P(m) explicitly. For larger rn we use P(rn)<~ 
2 m- raP(10)= 2 m-4. After a little computat ion we obtain 

P~(I) ~ (2 l+  97)2 l -  1o (A:4) 

Finally, we can write down a bound on (4.8) for 7 ' e  ~/C3. To keep our 
expressions compact,  we let 

w(l) = 3 -z+ lea(O 

so that IW(7)l&(~)<~w(]7]). Then 

1 
sup ~ q W(y)I e a(~) 

"~' ~ ~ a(7') ~ : ~ , ~  

1 
[ ~ M(l, l') w(l) + ~ (l'-- 2) N(I) w(l) 

~ a - ~  l= 3,4,...,20,g, 1~ l= 12,14 .... 

+ ~ [2Pb(l) + ( I ' -  2) P,(I)] w(l)]  (A.5) 
l=21 d 
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with l ' =  3. Substituting our  choice of  a(7 ), Eq. (A.1), our  bounds  on Pb(l) 
and Pi(l), inequalities (A.2) and (A.4), and the values of  M(l, l') and N(l) 
from Tables I and II, we obtain 0.8857 for the right side of (A.5). The 
various terms in this sum are shown in column 1 of  Table IV. 

Case 2. 7 '~  ~K4. Unlike the previous case, there are now an infinite 
number  of such walks 7'. Let M(l, 7') denote the number  of walks of  length 
l which intersect 7'. For  a fixed l, M(l, 7') is independent  of  7' if 7' is suf- 
ficiently far from the corners of V. Thus, finding all the M(l, 7') for a fixed l 
is a finite computat ion.  We would like to combine all the possibilities for 7' 
into a single "worst  case." One way to do this would be to take the 
supremum over ~' of  M(l, 7'). Unfortunately,  this is too crude. We can do 
better by using the monotonic i ty  of w(l)= 3- t+~  exp[a ( l ) ] .  It suffices to 
find M(l, 4) such that  

20 20 

sup ~ M(l, 7') w(l) <~ ~ M(I, 4) w(l) (A.6) 
Y' ~'r162 l =  3 l = 3  

We claim that  we can choose 

l l 1 

M(l, 4)= sup ~ M(k, 7 ')-  sup ~ M(k, 7') (A.7) 
y' E 3q/-4 k = 3 y' ~ 3q/-4 k = 3 

Table IV. The Condition for Convergence of the Polymer 
Expansion Is That the Total for Each Column Be Less Than 1 

Fixed polymer 
belongs to: ~33 ~4 "/r ~6 506 "~/>6 50>6 

Sum over 
~U3 0.3594 0 .3337 0 .2832 0 .2670 0 .1780 0 .1780 0.1246 
~#/4 0.2494 0 .2316 0.2947 0.2779 0.1235 0 .2779 0.1297 

0.0919 0.0853 0 .0724 0 .0682 0 .0455 0.0455 0.0318 
~r 0.0319 0 .0296 0.0377 0.0355 0 .0158 0 .0434 0.0221 
"W7 0.0452 0 .0490 0.0416 0.0392 0.0261 0.0261 0.0183 
"#/8 0.0234 0.0244 0 .0276 0 .0282 0 .0145 0 .0376 0.0324 
~r162 0.0158 0.0189 0.0169 0 .0168 0 .0112 0.0112 0.0078 
~0  0.0079 0.0089 0.0093 0.0098 0 .0052 0.0166 0.0137 
"~110<l<21 0.0169 0 .0214 0 .0197 0.0218 0.0131 0 .0275 0.0208 
~>2o 0.0245 0 .0386 0 .0462 0 .0562 0.0459 0.0591 0.0591 
'~6 0.0159 0 .0296 0.0251 0 .0355 0 .0552 0.1105 0.1105 
501o 0.0013 0.0028 0.0021 0.0033 0.0065 0.0152 0.0152 
~('> 10 0.0022 0.0041 0 .0052 0.0066 0.0055 0.0077 0.0077 

Total 0.8857 0 .8780 0 .8817 0.8659 0 .5460 0.8563 0.5937 
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for l > 3, while for l = 3 

m(3, 4 ) =  sup M(3, 7') 

The claim is proved as follows: 

2O 

M(/, 4) w(l) 
I - - 3  

= sup 2 M(k,?") [w(l)-w(l+l)] 
l = 3  t . y ' c  Wil k = 3  

20 

+ sup ~ M(k, 7') w(20) (A.8) 
7 ' E # - 4 k = 3  

Now fix some 7'~ ~W4. Since w(l)-w(l+ 1)~>0, the right side of (A.8) is 

19 l 20  

>>" Z • M(k, 7')[w(l)-w(l+l)]+ Z M(k, 7')w(20) 
1--3 k 3 k - - 3  

2O 

= ~ M(l, 7') w(l) (A.9) 
/ - - 3  

With the help of a computer we first calculate M(7', 4) for all 7' e ~4/4 
and then use (A.7) to calculate M(/, 4). The result is shown in the second 
column of Table II. 

The number of loops of lengths 6 and 10 which intersect 7' are shown 
in Table II. Bounding the other terms as in case 1, we get the bound (A.5) 
with l '  =4 .  Using (A.1) for a(l), we find that the expression on the right 
side of (A.5) equals 0.8780. 

Cases  3, 4, 5. 7'~ ~r ~W6, 5r These cases are all handled by the 
techniques used in the previous two cases. Table II contains the counting 
factors needed for these cases. The resulting bound is again given by (A.5) 
with l '  = 5 for 7' e Ws, l '  = 6 for 7' E ~r and l '  = 6 for 7' ~ ~6. The notation 
l' = 6 to denote the case of 7' ~ ~6 is also used in Table II. 

Evaluating the right side of (A.5) for these three cases, we find 

0.8817 for ~U5 

0.8659 for W 6 

0.5460 for oW 6 

Case 6. 7' e ~r 6. We bound the number of ~, ~ 5~t which intersect 7' 
by N(1) times the number of interior bonds in 7', namely 17']-  2. We use 
this bound for l =  6, 10, 12 .... We then bound IV'[- 2 = l ' - 2  by I'. 
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Table V. Total Number  of Lines 
of Length / for / Odd 

l Q(I) 

3 1 
5 2 
7 7 
9 20 

11 64 
13 202 
15 647 
17 2094 
19 6803 

Let Q(l) denote the number  of walks of  length l for odd l. Recall that  a 
walk of odd length must  start and end on opposites sides of a corner. 
Consequently,  the number  of such walks is finite. In the definition of Q(l) 
we only count  walks which occur near one particular corner. 

Q(I) is found for l = 3 ,  5 ..... 19 with a computer  and is shown in 
Table V. For  odd l, 3~<l~< 19, the number  of 7 E ~  which intersect 7' is 
bounded  by Q(l). 

For  l > 20 we bound  the number  of 7 E 5e~ which intersect 7' as before, 
i.e., by 

2Pb(/) + ( l ' -  2) Pi(l) 

where l ' =  17'1- For  l >  20, our  bound  on Pi(1) is greater than our  bound  on 
Pb(l). Thus, we can bound  the above by l ' (2l+ 97)2 t - l ~  

Finally, we must  consider those 7 in 2~t for even l, 4 ~< l ~< 20. We start 
with the case of  l =  4. If  we fix l', then the 7' with 17'1 = l' which intersects 
the largest number  of  7's in s 4 is that  7' which stays as close to ~?V as 
possible as shown in Fig. 3. (The figure shows the case of even l'. When l' 

Fig. 3. The "worst" walk 7' which can occur in case 6. 
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is odd, 7' must go from one side of the corner to the other.) For such a 7' 
with l ' even, the number of 7 e ~4 intersecting 7' is �89 + 1. If l '  is odd, the 
number is bounded by �89 + �89 which is ~< �89 + 1. For l =  6 the counting is 
similar' since there is only one possible shape for 7 with 17[ = 6. In this case 
the number of 7 e L'~6 intersecting 7' is bounded by �89 + 2. 

To bound the cases of even l, 8 ~< l ~< 20, fix a boundary bond b and let 
R(l) be the number of 7 ~ LPt such that the rightmost boundary bond in 7 is 
b. Given 7' and l, we consider how many such b's occur. The worst case 
occurs when 7' is stretched out as in Fig. 3. Bearing in mind that it takes 
two steps to go from one boundary bond to the next, we see from Fig. 4 
that the number of such b is at most 

�89189189 1 = � 8 9  

Hence the number of 7 E ~ which intersect 7' is at most (�89 + l -  2) R(l). 
The above bounds yield 

1 
sup ~, ~ ] W(7)] e ~(~') 

< s f > 6  a()~ ) ~':7 ~ ) " ~  ~ 

<~ ~ l' N(1) w(l) + ~ Q(l) w(l) 
l =  6, l even / = 3 ,  5,..., 19 

1o /1 l' / + ~ / ' (2 /+97)2  l-  w(l)+[-~ + l / w ( 4 )  
/ = 2 1  

J 

< > <  > <  > 

( 9_ - 2 ) / 2  ( 9_ ' - 2 ) / 2  ( 9-- 2) / 2 

Fig. 4. Two possibilities for the location of a walk ?, which intersects the walk ?,'. The num-  
bers shown lead to an upper bound on the number  of possible locations for the boundary 
bonds in ~. 

822/53/l-2-27 
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Fig. 5. The "worst"  loop 7' which can occur in case 7. 

Recall that a(7') = el', so factors of l'/a(7') equal 1/e. Since l '/> 7, factors of 
1/a(7') are bounded by 1/7e. Then we e aluate our bound and find 0.8563 
for the right side of (A.10). 

Case 7. 7' ~ ~>6- The number of 7 ~ L~ which intersect 7' is boun- 
ded by l'N(l) for l =  6, 10 ..... 

For odd l = 3, 5 ..... 19 the number of 7 E "/r which intersect 7' is boun- 
ded by Q(l). For l > 20, the number of 7 ~ ~ which intersect 7' is bounded 
by l'Pi(l), since 7' contains only interior bonds. 

In counting the number of 7 e ~ which intersect 7' for even 7, the 
worst 7' is shown in Fig. 5. For l =  4 and 6 the number of 7 ~ ~ which 
intersect 7' is bounded by l'/4 + 1/2 and by 1'/4 + 3/2, respectively. As in 
the previous case, we consider the possible locations of the rightmost boun- 
dary bond in 7. The number of possible locations for this bond can be 
bounded by drawing a figure similar to Fig. 4. The resulting bound is 

� 8 9 1 8 8 1 8 9  1 = � 8 8  

Table VI. Number of Lines Hitting 
a Fixed Bond in the Boundary and 
Returning to the Boundary to the 

Left of the Fixed Bond a 

l R(l) 

4 1 
6 1 
8 4 

10 9 
12 26 
14 75 
16 215 
18 649 
20 1943 

a The corner  is infinitely for away. 
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Hence the n u m b e r  of ~ e ~ which intersect 7 for even l =  8, l0  ..... 20 may 

be bounded  by ( l l ' +  l - - I ) R ( l ) .  Table VI shows values of R(l) .  

Thus, we have 

1 
sup , ~ I m(~)l e a~') 

~"' ~ c'c'c'c'c'c'c'c'c'~>7 a(7 ) -~:7~7'~e 

<~-~) /' 2 N(/lw(/)+ 2 Q(/)w(/) 
/ = 6 ,  l e v e n  / = 3,  5 , . . . . ,  19  

+ l '  P,.(l) w ( l ) +  l ' + - ~  w(4) 
l = 2 1  

+ 

which evaluates to 0.5937. 
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